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Probabilistic formalism and hierarchy of models for polydispersed turbulent two-phase flows
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This paper deals with a probabilistic approach to polydispersed turbulent two-phase flows following the
suggestions of Pozorski and Minier@Phys. Rev. E59, 855 ~1999!#. A general probabilistic formalism is
presented in the form of a two-point Lagrangian PDF~probability density function!. A new feature of the
present approach is that both phases, the fluid as well as the particles, are included in the PDF description. It
is demonstrated how the formalism can be used to show that there exists a hierarchy between the classical
approaches such as the Eulerian and Lagrangian methods. It is also shown that the Eulerian and Lagrangian
models can be obtained in a systematic way from the PDF formalism. Connections with previous papers are
discussed.
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I. INTRODUCTION

Polydispersed turbulent two-phase flows are ubiquitou
many industrial processes and natural phenomena. In t
flows, a discrete phase in the form of inclusions is embed
in a turbulent fluid. The turbulent fluid is referred to as t
continuous phase and the inclusions, or discrete partic
form the so-called discrete phase. These types of flows
volve many aspects of physics at different scales and
may have to use simultaneously several domains suc
turbulence@1#, particle dispersion@2#, granular matter@3#,
combustion and so on, to understand the basic mechan
that come into play. There is, therefore, a real challenge
take up when one attempts to model such flows and to si
late them with modern computer technology.

The challenge might appear, at the first glance, as a p
computational one since the equations describing the dyn
ics of the system are known. One could solve, as in the s
of direct numerical simulation~DNS! @4#, the Navier-Stokes
equations and consider the particles as moving bounda
@5#. The force exerted on each particle would be given by
surface integral of the fluid stress tensor. In practice, such
approach is not feasible since a fluid in turbulent motion
a huge number of degrees of freedom@6,7#, not to mention
the number of moving boundaries. Therefore, the challe
is to come up with a contracted description~a simplified
model! in order to express the problem in the form of equ
tions that contain the main physical aspects while still be
tractable with modern computer technology.

Nowadays, two methods are widely used for practical
merical simulations of polydispersed turbulent two-pha
flows. The Eulerian approach, or two-fluid model, where
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mean field equations are derived for both phases and
Lagrangian approach, or particle-tracking method, wher
mean field equations are solely used for the continuous ph
whereas particles are tracked individually by using a se
equations describing their dynamical behavior. In the L
grangian approach, one usually tracks stochastic parti
which, hopefully, reproduce the same statistics as the
ones, i.e., real particles are replaced by stochastic part
where the time evolution of the variables of interest is d
scribed by SDEs~stochastic differential equations!. The Eu-
lerian and Lagrangian methods only differ by the level
information that is retained for the description of the discr
particles. In the Eulerian model, the discrete phase is m
eled at the macroscopic level~mean field equations! whereas
for the Lagrangian approach modeling is performed at a m
soscopic level~SDEs!. The mesoscopic description is an in
termediate level between the macroscopic description~mean
field equations! and the microscopic description~exact local
instantaneous equations!.

It is worth emphasizing that, in both the classical Euleri
and Lagrangian methods, the fluid or continuous phase
mains modeled at the macroscopic level using mean fi
equations. There exist, however, alternatives for the sim
tion of the fluid ~single-phase flows! which are particularly
interesting when complex physics is involved, for examp
compressible reactive turbulent flows. In such flows,
classical problem of writing closure laws directly at the ma
roscopic level can be avoided by turning to PDF~probability
density function! models that simulate explicitly local instan
taneous variables@8#. In practice, PDF models appear as
good compromise between the level of information that
provided and the computational effort that is required@9#. In
these methods, which are middle-of-the-road approaches
tween the microscopic~local instantaneous equations! and
macroscopic~mean field equations! descriptions, the aim is
to model and simulate the one-point PDF of the rand
variables that are of interest~mesoscopic description!. By
further contraction, one can then retrieve the mean fi
©2002 The American Physical Society01-1
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equations for single-phase flows@10#.
In the present paper, the objective is to combine both

PDF approach to turbulent single-phase flows and the
grangian approach in order to propose a complete PDF
proach to polydispersed turbulent two-phase flows. The
of the paper is not to present new models but to introduc
formalism that contains the description of both phases.
tention is focused on a two-point PDF~one fluid point and
one particle point! where one simulates the joint PDF at tw
different points for the variables of interest both for the flu
and for the particles. Once again, the new feature is that
present PDF description includes the two phases, that is
fluid and the particle phases. Furthermore, it is shown t
the present probabilistic approach is useful to highlight s
eral points:

~i! The derivation of mean field equations: there exist
vast literature in this field and it is explained that, in t
frame of the present formalism, the mean field equations
derived in a natural way.

~ii ! The hierarchy between the different models: two-po
PDF model, Lagrangian model, and Eulerian model.

~iii ! The derivation of a closed set of mean field equatio
in a simplified case, the formalism is used to emphasize
level of simplification that is required by the macroscop
closures.

~iv! The connections between the present approach
previous work.

Consequently, the purpose of the present paper is no
validate or discuss the models by comparing numerical c
putations with experimental data. Some references to
merical computations obtained with the different approac
are, however, indicated at the end of the paper.

The paper is organized as follows. In Sec. II, the nee
mathematical tools are recalled, especially the link betw
the trajectory and the PDF points of view for diffusion pr
cesses. Then, a probabilistic description of polydispersed
bulent two-phase flows is given in Sec. III in terms of
two-point PDF and the equivalent trajectories. After that, i
shown in Sec. IV how the corresponding closed Fokk
Planck equation is written and the mean field equations,
the Eulerian model, can be derived. In Sec. V, the Lagrang
model is displayed and the hierarchy between the Eule
and Lagrangian approaches is explained. In Sec. VI, prac
trajectory models are introduced and from them, an exam
of a closed set of mean field equations is given in a sim
fied case. Finally, before concluding, connections betw
the present formalism and previous work are explained
Sec. VII.

II. GENERAL FORMALISM

The problem is treated with a terminology coming fro
the classicalN-body problem. Let us consider an ensemble
Nf fluid particles andNp inclusions to whichpf andpp vari-
ables are attached, respectively. A fluid particle is defined
a small element of fluid whose characteristic length scal
much larger than the molecular mean free path but m
smaller than the Kolmogorov length scale@11#. The fluid
particle has a massm, a volumeV, and a velocity that equal
04630
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the velocity field at the location of the particle. The dime
sion of the system isd5pfNf1ppNp . As mentioned in the
Introduction, only two-point information~one fluid point and
one particle point! is under investigation so that the dime
sion of the system is contracted tod5pf1pp . It is now
assumed~see Minier and Peirano@12# for a specification of
the mathematical and physical background! that the issue of
modeling polydispersed turbulent two-phase flows can
successfully addressed by using stochastic diffusion p
cesses@13# in order to mimic the evolution in time of the
variables describing the physics of the flow~i.e., the pf
1pp variables attached to a pair of particles, one fluid a
one discrete particle!.

When dealing with a stochastic process, there are
ways to characterize it: the time-evolution equation of t
trajectories of the process or the equation satisfied in sam
space by its PDF. This correspondence is particularly c
for a diffusion process and is central in the present pape
Z(t)5(Z1 ,...,Zn) is a diffusion process with a drift vecto
A5Ai and a diffusion matrixB5Bi j , the trajectories of the
process are solutions of the following SDE:

dZi~ t !5Ai„t,Z~ t !…dt1Bi j ~ t,Z~ t !…dWj~ t !, ~1!

where W(t)5(W1 ,...,Wn) is a set of independent Wiene
processes@13# and Z(t) is the state vector~the vector con-
taining thepf1pp variables!. The SDEs are calledLangevin
equationsin the physical literature@14#. This corresponds in
sample space to the Fokker-Planck equation for the tra
tional PDFp(t;zut0 ;z0) ~this equation is also verified by th
PDF p(t;z), @13#!,

]p

]t
52

]

]zi
@Ai~ t,z!p#1

1

2

]2

]zi]zj
@Di j ~ t,z!p#. ~2!

Actually, the correspondence between the two points of v
is not a strict equivalence. Indeed, the matrixD that enters
the Fokker-Planck equation is related to the diffusion ma
of the SDEs,B, by D5BBT ~BT is the transpose ofB!. Since
there is not always a unique decomposition of positive d
nite matrices for a given matrixD, there may exist severa
choices for the diffusion matrixB. Therefore, one can hav
different models for the trajectories that still correspond
the same transitional PDF. In other words, there is more
formation in the trajectories of a diffusion process than in
solution of the Fokker-Planck equation. However, in t
present work, interest is mainly focused on statistics
tracted from the stochastic process~weak approach@13#!.
Consequently, one can consider that the different models
the trajectories belong to the same class and then spea
the equivalence between SDEs and Fokker-Planck equat

It is now clear that the Lagrangian method, where t
dynamics of the particles are described by a set of SDEs
nothing else than a Monte Carlo simulation of an underly
PDF @15#. This correspondence~diffusion process–Fokker
Planck equation! is fundamental to the presentation of th
PDF formalism.
1-2
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III. PROBABILISTIC DESCRIPTION OF DISPERSED
TWO-PHASE FLOWS

The next sections are slightly anticipated and an exp
sion for the two-particle state vector~one fluid particle and
one discrete particle! is directly introduced. In the case o
turbulent, reactive, compressible, dispersed two-phase flo
an appropriate state vector is~see Sec. III D!

Z5~xf ,Uf ,ff ,xp ,Up ,fp!, ~3!

whereff andfp are to be specified@note that we distinguish
between physical space and sample space,z
5(yf ,V f ,cf ,yp ,Vp ,cp)#. Once again, it is necessary to in
troduce two independent variables for the positions of
fluid and the discrete particles since the two kinds of p
ticles are not convected by the same velocities.

A. Eulerian and Lagrangian descriptions

There are two possible points of view for the statistic
description of the fluid-particle mixture. The Lagrangian o
where one is interested in, at a fixed time, the probability
find a pair of particles~a fluid particle and a discrete particle!
in a given state and the Eulerian description~field approach!
where one seeks the probability to find, at a given time an
two fixed points in space~a ‘‘fluid point’’ xf and a ‘‘discrete-
particle point’’xp!, the fluid-particle mixture in a given state

In the case of the Lagrangian description, let us introd
the PDF pf p

L . The following notation is used:L or E as
superscripts to distinguish between Lagrangian and Eule
quantities andf and p as indices to specify if a two-poin
( f p), or one-point~f or p! PDF is used. The probability to
find a pair of particles at timet whose positions are in th
range @yk ,yk1dyk#, whose velocities are in the rang
@Vk ,Vk1dVk#, and whose associated quantities~scalars and
other variables! are in the range@ck ,ck1dck#, is ~wherek
is the phase index, eitherf or p!

pf p
L ~ t;yf ,V f ,cf ,yp ,Vp ,cp!dyf dV f dcf dyp dVp dcp .

~4!

A distinction is made between the parameters and the v
ables by using a semicolumn to separate them. Two marg
PDFs have a clear physical meaning: the first one,pf

L , ob-
tained by integration over all variables of the discrete p
ticles, is the PDF related to the fluid characteristics and
second one,pp

L , derived by contraction over all characteri
tics of the fluid particles, is the PDF related to the discr
phase. The two PDFs are given by

pk
L~ t;yk ,Vk ,ck!

5E pf p
L ~ t;yf ,V f ,cf ,yp ,Vp ,cp!dyk̄ dV k̄ dc k̄ ,

~5!

where k̄ is the complement ofk ~for example, ifk5 f then
k̄5p!.
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For the field description~Eulerian point of view!, let us
consider the quantitypf p

E . The probability to find, at timet
and at positionsxf andxp , the system in a given state in th
range@Vk ,Vk1dVk# and @ck ,ck1dck# is

pf p
E ~ t,xf ,xp ;V f ,cf ,Vp ,cp!dV f dcf dVp dcp . ~6!

pf p
E is not a PDF since, in a fluid-particle mixture, one cann

always find with probability 1, at a given time and at tw
different locations, a fluid and a discrete particle in any sta

Furthermore, at a given pointx in physical space and a
given timet, the sum of the probabilities to find a fluid pa
ticle or a discrete particle in any state is one, i.e.,pf p

L 50
when yf5yp5y and pf p

E 50 for xf5xp5x. Consequently,
one can write, in terms of the marginals of the Eulerian d
tribution function,

E pf
E~ t,x;V f ,cf !dV f dcf1E pp

E~ t,x;Vp ,cp!dVp dcp51,

~7!

where the marginalspk
E are defined as done in Eq.~5! for

pk
L ,

pk
E~ t,xk ;Vk ,ck!5E pf p

E ~ t,xf ,xp ;V f ,cf ,Vp ,cp!

3dxk̄ dV k̄ dc k̄ . ~8!

Equation~7! can also be rewritten by introducing the norma
ization factors ofpf

E and pp
E , namely,a f(t,x) andap(t,x),

respectively, to yield

a f~ t,x!1ap~ t,x!51, ~9!

where, by definition,

ak~ t,x!5E pk
E~ t,x;Vk ,ck!dVk dck . ~10!

a f(t,x) represents the probability to find the fluid phase,
time t and positionx, in any state@0<a f(t,x)<1#. This
probability is not always 1 as in single-phase flows where
physical space is continuously filled by the fluid. In a flui
particle mixture, at (t,x) there might be some fluid or a dis
crete particle. Similarly, the probability to find the discre
phase at timet and position x in any state isap(t,x)
@0<ap(t,x)<1#. It has been explained above thatpf p

E is not
a PDF but rather a distribution function~as a matter of fact,
it represents a field of distribution functions!: the normaliza-
tion factor ofpf p

E is always less than or equal to 1. This ca
be clarified in the particular case where the fluid particles a
the discrete particles represent independent events, i.e.pf p

E

5pf
Epp

E ~strictly speaking, this is not always possible sin
they cannot be located, for a given time, at the same poin
physical space!. Under this assumption, the normalizatio
factor of pf p

E becomesap(t,x) a f(t,x).
1-3
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B. Mass density functions

As explained in Sec. II, a fluid particle~and also a discrete
particle! is completely described by its mass, position, velo
ity and associated scalars, so that it is logical to introduc
mass density function~MDF! Fk

L where

Fk
L~ t;yk ,Vk ,ck!dyk dVk dck ~11!

is the probable mass of fluid (k5 f ) or discrete particles (k
5p) in an element of volumedykdVkdck . Both mass den-
sity functions are consequently normalized by the total m
Mk of the respective phases~M f for the continuous phas
andM p for the discrete phase, which are constant in time
the sake of simplicity!,

Mk5E Fk
L~ t;yk ,Vk ,ck!dyk dVk dck . ~12!

The mass density functionsFk
L can be expressed in terms

the respective total massesMk and the marginal PDFspk
L as

Fk
L5Mkpk

L . A two-point fluid-particle mass density functio
is also defined,

Ff p
L ~ t;yf ,V f ,cf ,yp ,Vp ,cp!

5M pM fpf p
L ~ t;yf ,V f ,cf ,yp ,Vp ,cp!, ~13!

and its marginals are related to the mass density functio
phasek by Fk

L5Mk̄Fk
L .

C. General relations between Eulerian and Lagrangian
quantities

Since one of the aims of the present paper is the der
tion of mean field equations, relations between Lagrang
and Eulerian MDFs~and PDFs! have to be found. By doing
so, the partial differential equations verified by different E
lerian quantities will be written and from there, by definin
an appropriate operator~expected value!, mean field equa-
tions will be derived.

By generalization of the ideas of Balescu@16#, the La-
grangian MDFFf p

L can be linked to an Eulerian MDF b
writing @12#

Ff p
E~ t,xf ,xp ;V f ,cf ,Vp ,cp!

5Ff p
L ~ t;yf5xf ,V f ,cf ,yp5xp ,Vp ,cp!

5E Ff p
L ~ t;yf ,V f ,cf ,yp ,Vp ,cp!

3 d~xf2yf !d~xp2yp!dyf dyp , ~14!

whereFf p
E is the two-point fluid-particle Eulerian mass de

sity function. By direct integration of the previous equati
over physical spacexk and phase space (Vk ,ck), the associ-
ated marginals~the one-point Eulerian mass density fun
tions,Fk

E! verify a similar relation, that is,
04630
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Fk
E~ t,xk ;Vk ,ck!5Fk

L~ t;yk5xk ,Vk ,ck!

5E Fk
L~ t;yk ,Vk ,ck!d~xk2yk!dyk .

~15!

By recalling thatFk
L5Mk̄Fk

L , a direct consequence of th
previous equation is thatFk

E5Mk̄ Fk
E . Therefore, the rela-

tions between the Eulerian mass density functionsFk
E and the

Lagrangian mass density functionsFk
L are also given by Eqs

~15!.
Bearing in mind the results that have been displayed

far, there are two possible strategies, yet equivalent, for
derivation of the mean field equations, i.e., for the path
tween Lagrangian and Eulerian MDFs, since the phys
space is shared by the fluid and the particles.

~i! In the first procedure, relations between the Lagrang
and Eulerian MDFs are worked out at the two-point lev
Once on the Eulerian side, information is still available at t
two-point level. For a given point (t,x) in the time-space
domain, we consider

Ff p
L ~ t;yf5x,yp ,V f ,cf ,Vp ,cp!,

Ff p
L ~ t;yf ,yp5x,V f ,cf ,Vp ,cp!. ~16!

Correspondence with the Eulerian MDFs is found by us
Eq. ~14!. Then, from these two-point Eulerian MDFs bo
marginals at the same point in physical space can be
tracted, i.e.,Fk

E(t,x;Vk ,ck).
~ii ! In the second procedure, relations between the

grangian and Eulerian MDFs are worked out at the one-p
level, that is,

Fk
L~ t;y,Vk ,ck!, ~17!

is under consideration~or Fk
L!. Contraction has been mad

for the two-point Lagrangian MDF before going on to th
field description. By using Eq.~15!, information is obtained
in the form of both the one-point fluid and particle Euleria
mass density functions,Fk

E(t,x;Vk ,ck), at the same point in
physical space.

1. Two-point relations between Eulerian and Lagrangian
quantities

If strategy ~i! is adopted, the following relations ar
needed. With Eq.~14!, the definitions of the two-point fluid-
particle Lagrangian MDF,Ff p

L 5M fM ppf p
L , and the two-

point fluid-particle transitional PDF,p̂f p
L , one can write@12#

Ff p
E~ t,xf ,xp ;V f ,cf ,Vp ,cp!

5E p̂f p
L ~ t;xf ,V f ,cf ,xp ,Vp ,cput0 ;
1-4
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xf 0 ,V f 0 ,cf 0 ,xp0 ,Vp0 ,cp0)

3Ff p
E~ t,xf 0 ,xp0 ;V f 0 ,cf 0 ,Vp0 ,cp0!

3dxf 0 dV f 0 dcf 0 dxp0 dVp0 dcp0 .
(18)

This relation shows that the Eulerian MDFFf p
E is ‘‘propa-

gated’’ by the transitional PDF, or in the language of sta
tical physics, the transitional PDFp̂f p

L is thepropagatorof an
information that is the two-point fluid-particle Euleria
MDF. Consequently, the partial differential equation that
verified by the transitional PDF is also verified by the Eu
rian mass density functionFf p

E .
The definitions of the expected densities,^r f&(t,x) and

^rp&(t,x), and the probability of presence of both phas
a f(t,x) andap(t,x), can be expressed in terms of the tw
point Eulerian MDFs and the associated marginals. For
expected densities, one can write

ak~ t,x!^rk&~ t,x!5
1

Mk̄
E Ff p

E~ t,x,xk̄ ;Vk ,ck ,V k̄ ,c k̄!

3dxk̄ dV k̄ dc k̄ dVk dck , ~19!

⇒ak~ t,x!^rk&~ t,x!5E Fk
E~ t,x;Vk ,ck!dVk dck . ~20!

Similarly, a f andap are defined by

ak~ t,x!5
1

Mk̄
E 1

rk~ck!
Ff p

E~ t,x,xk̄ ;Vk ,ck ,V k̄ ,c k̄!

3dxk̄ dV k̄ dc k̄ dVk dck , ~21!

⇒ak~ t,x!5E 1

rk~ck!
Fk

E~ t,x;Vk ,ck!dVk dck . ~22!

2. One-point relations between Eulerian and Lagrangian
quantities

If strategy ~ii ! is adopted, the following relations ar
needed. Using Eq.~15!, the definition of the one-point La
grangian MDFFk

L5Mkpk
L , and introducing the one-poin

transitional PDFp̂k
L , one can write@12#

Fk
E~ t,x;Vk ,ck!5E p̂k

L~ t;x,Vk ,ckut0 ;xk0 ,Vk0 ,ck0!

3Fk
E~ t,x0 ;Vk0 ,ck0!dx0 dVk0 dck0 .

~23!

Once again, this relation shows that the Eulerian mass d
sity functionFk

E is ‘‘propagated’’ by the transitional PDF, o
in the language of statistical physics, the transitional PDFp̂k

L

is the propagator of an information which is the Eulerian
mass density functionFk

E .
Integration of Eq.~15! over x5xk ,Vk ,ck gives the total

mass of phasek, Mk , which means that the integral ofFk
E

over phase space (Vk ,ck) is the expected density of phasek
04630
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at (t,x) ~the probable mass of phasek in a given state per
unit volume!. The expected density, denoted^rk&(t,x), is

ak~ t,x!^rk&~ t,x!5E rk~ck!pk
E~ t,x;Vk ,ck!dVk dck ,

~24!

where the Eulerian mass density functionFk
E is

Fk
E~ t,x;Vk ,ck!5rk~ck!pk

E~ t,x;Vk ,ck!, ~25!

andak(t,x) is of course defined as the normalization fac
of pk

E , see Eq.~10!. As mentioned at the beginning of th
section,ak(t,x) represents the probability to find phasek, at
time t and positionx, in any state@0<ak(t,x)<1#. Integra-
tion of Fk

L over phase space (Vk ,ck) yields

pk
L~ t;x!5

1

Mk
ak~ t,x!^rk&~ t,x!, ~26!

and therefore the conditional expectationpk
L(t;Vk ,ckux) is

given by

pk
L~ t;Vk ,ckux!5

rk~ck!

ak~ t,x!^rk&~ t,x!
pk

E~ t,x;Vk ,ck!.

~27!

Thus, in a compressible flow, the one-point fluid Lagrang
PDF conditioned by the position is not the one-point flu
Eulerian distribution function but the density-weighted on
point fluid Eulerian PDF,pf

E/a f .

D. Trajectory point of view

The trajectory point of view is now chosen~see Sec. II!
and the construction of the trajectory of a pair of particles
briefly explained with no emphasis on the models, and t
for the sake of generality. Indeed, as specified in the In
duction, the purpose of the present paper is to present a
eral formalism and not to introduce and discuss models u
in numerical simulations. Practical models will be display
in Sec. VI.

From now on, the study is limited to nonreactive polyd
persed turbulent two-phase flows with two-way couplin
i.e., particles are dispersed by the turbulent fluid and at
same time they modify the turbulent state of the fluid. T
collisional mechanisms between discrete particles are
glected. Furthermore, both phases have a constant de
with r f!rp ~heavy particles!. These restrictions are mad
for the sake of simplicity and extension of the present f
malism to reactive flows is straightforward~this is precisely
one of the main interests of PDF models!, provided a proper
introduction of the relevant scalar variables infk . The treat-
ment of collisions is a more complex issue that is outside
scope of the present paper but some proposal for a pos
approach can be found in Ref.@12#.

In the particular case of heavy particles, the force exer
on a rigid sphere in a turbulent fluid reduces to the sum
the drag force and possible external force fields@12#. The
accelerationAp reads
1-5
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Ap5
dUp

dt
5

1

tp
~Us2Up!1FE , ~28!

whereUs5U„xp(t),t… is the fluid velocity seen, i.e., the flui
velocity sampled along the particle trajectoryxp(t), not to be
confused with the fluid velocityUf5U„xf(t),t… denoted by
the subscriptf. These velocities are indeed different sinc
due to particle inertia and external force fields, a fluid an
discrete particle located at nearby positions at timet do not
follow the same trajectories under a time intervalDt @2,12#
~this drift is often referred to as thecrossing trajectory effec
in the literature@2#!. In Eq. ~28!, tp is the particle relaxation
time given by tp5(4rpdp)/(3r fCDuUr u) where Ur5Us
2Up is the local instantaneous relative velocity.CD , the
drag coefficient, is a nonlinear function of the particle-bas
Reynolds number, Re5rpuUr u/n f ~in fact, CD is a complex
nonlinear function of the discrete particle diameter,dp! @17#.

1. Trajectory of a fluid particle

Kolmogorov theory@11# ~for Lagrangian statistics! tells
us that the acceleration of a fluid particle is a fast variable
a time scaledt belonging to the inertial range. This variab
can be eliminated by fast variable elimination techniqu
~see@12# for a detailed proof!. A general diffusion process i
then used to simulate the time rate of change ofZ f
5(xf ,Uf),

dxf ,i5U f ,i dt, ~29a!

dUf ,i5Af ,i dt1Bf ,i j dWj , ~29b!

where the drift vectorA f and the diffusion matrixBf are
functions of t and Z f but also of the moments o
Z f (^Z f&,^Z fZ f&,...). In Eqs. ~29!, the local instantaneou
equations~the Navier-Stokes equations in Lagrangian for!
have been replaced by SDEs, that is, real fluid particles
replaced by stochastic particles, which reproduce the s
statistics.

2. Trajectory of a discrete particle

Let us assume for the moment that, at each point in
time-space domain, the properties of the fluid are known
terms of mean fields, i.e., in terms of the moments ofZ f . In
the case of discrete particles, the extension of Kolmogo
theory is not straightforward. The choice of the variables
the construction of the discrete particle state vector is
subject to some debate@12,18,19#. One hint can be found
however, if the limit case of particles having small inertia
considered~particles nearly behave as fluid elements!. In this
case, Kolmogorov theory indicates that fluid-particle acc
erations are governed by small scales which have a b
chance of showing some universal characteristics whe
fluid-particle velocities are more likely to be problem or flo
dependent. Building from the fluid case, it appears prefera
to include fluid velocities in the state vector, i.e., the flu
velocity seenUs. It is then possible to generalize Kolmog
orov theory and derive results that suggest to use a diffu
process~Langevin equation! for the simulation ofUs @20,21#
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~see@12# for a detailed explanation!. A general diffusion pro-
cess is then introduced to simulate the time rate of chang
Zp5(xp ,Up ,Us, dp),

dxp,i5Up,idt, ~30a!

dUp,i5Ap,idt, ~30b!

dUs,i5As,i dt1Bs,i j dWj . ~30c!

The drift vectorAs and the diffusion matrixBs are functions
of t, Z f andZp but also of the moments ofZ f andZp . By
writing Eqs. ~30!, one merely wants to mimic the local in
stantaneous behavior of the real discrete particles by stoc
tic particles whose dynamical behavior can be described
Langevin equations.

3. Trajectory of a pair of particles

The path that is adopted here is to gather the preced
results that have just been derived for the time increment
the fluid velocity seen along discrete particle trajectories a
for the time increments of the fluid velocity along fluid pa
ticle trajectories. The system of SDEs is, however, supp
mented by two terms~accelerations!, namely,Ap→ f that re-
flects the influence of the discrete particles on the fluid a
Ap→s that accounts for the influence of the discrete partic
on the statistics of the fluid velocity sampled along the t
jectory of a discrete particle. These terms are a simple c
sequence of Newton’s third law: the fluid exerts a forceFf→p
on the discrete particles and, in return, the particles exe
force Fp→ f52Ff→p on the fluid. The trajectory of a pair o
particles is simulated by resorting to a general diffusion p
cess. The time rate of change ofZ5(Z f ,Zp) is given by

dxf ,i5U f ,i dt, ~31a!

dUf ,i5Af ,i dt1Ap→ f ,i dt1Bf ,i j dWj8 , ~31b!

dxp,i5Up,i dt, ~31c!

dUp,i5Ap,i dt, ~31d!

dUs,i5As,i dt1Ap→s,i dt1Bs,i j dWj , ~31e!

where the expression for the drift vectorsA f ,Ap ,As and the
diffusion matricesBf ,Bs , can be found by simple identifi
cation with Eqs.~29! and ~30!. By assuming that the trajec
tories of a pair of particles can be obtained in such a way,
following approximations have been made.

~i! Two different Wiener processes are used for the vel
ity increments of the fluid and the velocity increments of t
fluid seen. Consequently, the correlation between the fl
acceleration at locationxf and the time rate of change ofUs
along discrete particle trajectories at locationxp is neglected.
At two nearby locations, when particle inertia becomes sm
(tp→0), the present approximation is not accurate~see Kol-
mogorov theory! but as soon as inertia is not negligible th
two accelerations are not necessarily correlated. This im
fection is bearable in the frame of our work where our re
1-6
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objective is not a two-point description for the fluid but
two-point description for two-phase flows from which me
field equations can be extracted.

~ii ! In Eqs. ~31! an additional term should be present
the form of a short-range interaction since at a given poin
the time-space domain only one phase can be presen
mentioned previously~this term should also enter th
Fokker-Planck equation verified bypf p

L !. The form of this
short-range interaction is not discussed here.

4. Treatment of the coupling terms

In the exact local instantaneous equations for the fl
~the Navier-Stokes equations!, a formal treatment of the
force exerted on the fluid by the discrete particles implies
use of a distribution~or density of force! acting on the fluid
located in the neighborhood of the discrete particles in or
to express the resulting acceleration on nearby fluid partic
This accurate treatment, which would result in a multipo
treatment of the discrete phase, is outside the scope o
present paper. Here, in the frame of the one-point appro
the influence of the discrete particles on the fluid is e
pressed directly in the SDEs, Eqs.~31!, with stochastic tools.

The force exerted by a discrete particle on the neighb
ing fluid corresponds to the drag force and it can be writ
as

Fp→ f52mpAp
D52mp

Us2Up

tp
, ~32!

and obviously the variables enteringFp→ f are variables at-
tached only to the discrete particles, namely,Up , Us , and
dp . As a consequence, the influence of the particles on
fluid seen can be expressed directly as a function of th
variables. Let us consider a local model where, at loca
xp , the force due to one particle is given by Eq.~32!. The
total force acting on the fluid element surrounding a discr
particle is then the sum of all elementary forces,Fp→ f , due
to all neighboring discrete particles,

Ap→s52
aprp

a fr f

Us2Up

tp
. ~33!

Here, it is implicitly assumed that all neighboring particl
have the same acceleration termAp

D . This acceleration is
multiplied by the expected particle mass atxp ,aprp , divided
by the expected mass of fluid,a fr f , since the total force is
distributed only on the fluid phase. This simple model is o
a first proposal and work remains to be done to improve
closure of this term.

In the case of the reverse force in the equation of a fl
particle, the situation is more delicate. Indeed, a local mo
for Ap→ f at locationxf cannot be expressed directly in term
of the local instantaneous variables attached to the disc
element that is located atxp . At time t and for a fluid particle
located atxf5x, Ap→ f is modeled as a random variable th
is defined byAp→ f50 with probability 12ap(t,xf) and
Ap→ f5pp with probability ap(t,xf). pp is a random vari-
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able that plays the role of an ersatz of the Eulerian rand
variable that is formed from the discrete particles at locat
xp5x,

)p[
rp

r f

Up2Us

tp
. ~34!

In other words, from the stochastic models for the discr
particles, or from the one-point particle PDF value at loc
tion x5xf , the random variablespp are formed with the
same distribution. This random term mimics the reve
forces due to the discrete particles and is only nonzero wh
the fluid particle is in the close neighborhood of a discr
particle. At the locationx considered,) p is defined as a
random acceleration term in the equation ofUf , correlated
with Uf so that one has

^)p,i&52
rp

r f
^Ap,i

D &, ~35a!

^)p,iU f , j&52
rp

r f
~Ap,i

D Us, j !. ~35b!

E. Fokker-Planck equation

According to Sec. II, the two-point model given by Eq
~31! is equivalent to a Fokker-Planck equation given
closed form for the transitional PDFp̂f p

L . This Fokker-
Planck equation is also verified by the two-point flui
particle Lagrangian PDFpf p

L and by the fluid-particle Eule-
rian mass density functionFf p

E , as seen in Sec. III C. The
Fokker-Planck equation is, forpf p

L ,

]pf p
L

]t
1Vf ,i

]pf p
L

]yf ,i
1Vp,i

]pf p
L

]yp,i

52
]

]Vf ,i
~@Af ,i1^Ap→ f ,i uyf ,V f&#pf p

L !

2
]

]Vp,i
~Ap,i pf p

L !2
]

]Vs,i
~@As,i

1^Ap→s,i uyp ,Vp ,cp&#pf p
L !

1
1

2

]2

]Vf ,i]Vf , j
~@BfBf

T# i j pf p
L !

1
1

2

]2

]Vs,i]Vs, j
~@BsBs

T# i j pf p
L !. ~36!

All tools, which are needed to write mean field equatio
have now been gathered, i.e.,~i! the correspondence betwee
a SDE and a Fokker-Planck equation and~ii ! the relations
between Eulerian and Lagrangian tools.

IV. MEAN FIELD EQUATIONS

The partial differential equations~PDEs! satisfied by dif-
ferent mean fieldŝ f (Z)&(t,x), which are expectations of a
1-7
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given polynomial functionf of Z, are now derived. Here, th
study is limited to the expected values ofZ, ^Z&, and the
second-order moments,^ZZ &. In the literature, the system o
mean field equations for̂Z& and^ZZ & is often referred to as
theEulerian modelor sometimestwo-fluid model. As a mat-
ter of fact, the system of equations formed by the mean fi
equations should rather be calledtwo-field model. Indeed, the
spirit of the approach is to derive field equations for bo
phases by using arguments from statistical physics. Le
investigate how such equations are derived~for incompress-
ible turbulent flows carrying discrete particles of consta
density but different diameters!.

Let us recall momentarily the Lagrangian and Euler
tools that were defined in the previous section as well as
relations between them, see Fig. 1. A two-point fluid-parti
Lagrangian PDF,pf p

L , ~extracted from the transitional PD
p̂f p

L ! has been introduced and from it separate information
each phase was obtained in the form of the marginalspk

L .
Associated MDFs (Fk

L) were defined and for both of them
correspondence with the field~Eulerian! description could be
made ~this crucial step is indicated with dashed arrows
Fig. 1!. It was then found that each Eulerian mass den
function Fk

E is propagated by the corresponding transitio
PDF, p̂k

L . The Fokker-Planck equations verified byFk
E can

then be directly derived from the Fokker-Planck equatio
satisfied by the transitional PDFsp̂k

L or from the Fokker-
Planck equation verified by the transitional PDFp̂f p

L . There
is another, yet equivalent, way to go from the transitio
PDF p̂f p

L to the Eulerian MDFsFk
E , see Fig. 1. One can kee

the joint ~one fluid point–one particle point! information by
treating the two-point fluid-particle Eulerian MDF,Ff p

E . As
indicated in Fig. 1, by direct integration, the Fokker-Plan
equations verified by the marginalsFk

E can be obtained from
the Fokker-Planck equation verified byFp f

E which is, in its
turn, obtained from the PDF verified by the transitional PD
p̂f p

L . The latter equations are also verified byFk
E .

To sum up, it is now known how the Fokker-Planck equ
tions verified by the Eulerian MDFsFk

E can be derived. Let
us show how mean field equations are obtained from
Fokker-Planck equations verified byFk

E .

A. Fluid and discrete particle expectations

In the case of discrete particles of constant density
variable diameter carried by an incompressible fluid, all
formation is contained in the distribution function
pk

E(t,x;Vk ,ck) @with cp5(Vs ,dp) for the discrete phase
and cf5B for the fluid#. However, the definition of the
expected values and the derivation of the mean field eq
tions will be addressed, for both phase, in terms of the MD
Fk

E(t,x;Vk ,ck)5rkpk
E(t,x;Vk ,ck) ~the reason for this will

shortly be explained!.
The mathematical definition of the expectedEulerian

value of a functionH(Vk ,ck) ~a sufficiently smooth func-
tion attached to a given particle, i.e., a fluid or a discr
particle! is
04630
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ak~ t,x!^rk&~ t,x!^Hk&~ t,x!

5E H~Vk ,ck!Fk
E~ t,x;Vk ,ck!dVk dck . ~37!

Therefore, in the present formalism, all expected values m
be understood asmass-weighted mean values. The fluctuat-
ing component of the variables attached to the discrete
ticles are, for the velocity of the discrete particlesup5Up
2^Up& with ^up&50, for the fluid velocity seen
us5Us2^Us& with ^us&50, and for the diameter of the dis
crete particlesdp85dp2^dp& with ^dp8&50. Similarly, the
fluctuating velocity for a fluid particle is given byuf5Uf
2^Uf&.

For the moments of the discrete phase, a general de
tion is introduced, that is a moment of ordern1m1q ~with
n1m1q.1!,

ap~ t,x!rp^~dp8!nus,i 1
¯us,i m

up, j 1
¯up, j q

&~ t,x!

5E ~dp8!n)
k51

m

vs,i k)l 51

q

vp, j l
Fp

E~ t,x;Vp ,cp!dVp dcp ,

~38!

where (i k , j l)P$1,2,3%2, ;(k,l ). Different moments can
then be obtained by choosing the appropriate values
~n,m,q!. In the present paper, information is limited to th
second-order moments, i.e.,n1m1q52. At last, the mo-
ments of ordern for the fluid phase are given by

a f~ t,x!r f ^uf ,i 1
¯uf ,i n

&~ t,x!5E )
k51

n

v f ,i k
F f

E~ t,x;V f !dV f .

~39!

All second-order moments are listed in Table I. Note that
dimension of the space associated to these moments i
ready 34, and this gives a foretaste, first, of the level
complexity when one formulates mean field equations
polydispersed turbulent two-phase flows, and second, of
amount of computational effort needed to solve such a s
tem of equations~when it is finally closed!.

It is now necessary to clarify the correspondence betw
the mathematical expectations, Eq.~37!, and Monte Carlo
estimations drawn from a finite ensemble of particles. W
Eq. ~15! and by approximatingd(xk2yk) as 1/dVx where
dVx is a small-volume around pointxk , it is straightforward
to write Eq.~37! as

ak~ t,x!^rk&~ t,x!^Hk&.
1

dVx
(
i 51

Nx
k

mk
i H„Uk

i ~ t !,fk
i ~ t !….

~40!

Here Nx
k is the number of fluid (k5 f ) or discrete (k5p)

particles in volumedVx and mk
i is the mass of a fluid or

discrete particle indexedi. The preceding equation can b
written by supposing that~i! all particles indVx represent
different realizations,~ii ! space homogeneity is fulfilled in
dVx , and ~iii ! Nx

k is sufficiently large so that the ensemb
1-8
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FIG. 1. Derivation of the mean field equations from the two-point fluid-particle Eulerian mass density function~→! or derivation of the
mean field equations from the marginal Lagrangian PDFs~⇒!. The Eulerian approach corresponds to the field equations wherea
Lagrangian approach is indicated by the symbol@* #
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average is a good estimation of the mathematical expe
tion. Furthermore, by making the following approximation

ak~ t,x!^rk&~ t,x!.
1

dVx
(
i 51

Nx
k

mk
i , ~41!

one has

^Hk&.(
i 51

Nx
k

mk
i H„Uk

i ~ t !,fk
i ~ t !…Y (

i 51

Nx
k

mk
i , ~42!

which is indeed the discrete form of the Eulerian ma
weighted mean value of a given function.

In the particular case of an incompressible fluid, sin
fluid particles have then a constant mass, the preceding
pression is of course simplified to yield the local ensem
average. For discrete particles of constant density such a
plification is not relevant. Indeed, such particles may ha
different diameters and therefore different masses.
natural averaging operator is therefore the mass-weig
average.

B. Mean field equations for the fluid phase

In order to obtain the mean field equations for the me
fluid velocity ^U f ,i& and the second-order velocity mome
^uf ,iuf , j&, a standard procedure is used in analogy with
derivations that can be found in kinetic theory@22,23#. This
procedure is general and can be followed to obtain the m
field equations verified by any moment. The expected va
of a functionHf(V f) is defined by Eq.~37! ~cf is omitted
since the flow is incompressible!. With Eqs. ~23! and ~36!,
and the explanations of Fig. 1, it is straightforward to wr
the Fokker-Planck equation verified byF f

E(t,x;V f),

]F f
E

]t
1V f ,i

]F f
E

]xi
52

]

]Vf ,i
~Af ,iF f

E!

1
1

2

]2

]Vf ,i]Vf , j
~@BjBf

T# i j F f
E!

2
]

]Vf ,i
~^Ap→ f ,i ux,V f&F f

E!, ~43!

and if one multiplies Eq.~43! by Hf and applies thê •&
operator, one can write after some algebra
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]t
~a fr f^Hf&!1

]

]xi
~a fr f ^Vf ,iHf&!

5a fr f K Af ,i

]Hf

]Vf ,i
L 1

1

2
a fr f K ~BfBf

T! i j

]2Hf

]Vf ,i]Vf , j
L

1E ~Ap→ f ,i ux,V f !
]Hf

]Vf
F f

E~ t,x;V f !dV f . ~44!

In this derivation, it has been supposed thatA f , Bf , andHf
are sufficiently smooth so that all generalized integrals c
verge~by construction,F f

E and ]F f
E/]Vf ,i converge to zero

when, at least, one component of the fluid velocity goes
infinity, Vf ,i→6`!. By replacingHf by Hf51, Hf5Vf ,i
and Hf5Vf ,iVf , j , the continuity equation the momentum
equations~mean field equations forUf!, and the Reynolds-
stress equations~mean field equations for̂ufuf&! are ob-
tained, respectively. The Reynolds-stress equations can
be derived using another route, i.e., by making a change
coordinates in sample space~this procedure will be outlined
in the next section!. The continuity and momentum equation
are

]

]t
~a fr f !1

]

]xi
~a fr f^U f ,i&!50, ~45!

a fr f

D f

Dt
^U f ,i&52

]

]xj
~a fr f ^uf ,iuf , j&!1a fr f ^Af ,i&1I f ,i

M

~46!

and after some algebra, the Reynolds-stress equations
given by

a fr f

D f

Dt
^uf ,iuf , j&52

]

]xk
~a fr f ^uf ,iuf , juf ;k&!

2a fr f ^uf ,iuf ,k&
]^U f , j&

]xk

2a fr f ^uf , juf ,k&
]^U f ,i&

]xk

1a fr f ^Af ,iv f , j1Af , jv f ,i&

1a fr f ^~BfBf
T! i j &1I f ,i j

R , ~47!

where the Eulerian derivative along the path of a fluid p
ticle is denotedD f /Dt with D f /Dt5]/]t1^U f ,m&]/]xm . In
both the momentum and Reynolds-stress equations, there
1-9
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TABLE I. Definition of the second-order moments: all moments attached to the discrete particle
calculated with Eq.~38! whereas the Reynolds stresses are obtained from Eq.~39!.

Second-order moment n m p Variable

Reynolds stresses 2 ^uf ,iuf , j&
Second-order particle velocity moment 0 0 2 ^up,iup, j&
Second-order fluid velocity seen moment 0 2 0 ^us,ius, j&
Fluid-particle velocity correlation tensor 0 1 1 ^up,ius, j&
Diameter-particle velocity correlation tensor 1 0 1 ^dp8up,i&
Diameter-fluid velocity seen correlation tensor 1 1 0 ^dp8us,i&
Second-order diameter moment 2 0 0 ^(dp8)
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term ~I f ,i
M for the momentum equations andI f ,i j

R for the
Reynolds-stress equations! that accounts for the influence o
the discrete particles on the fluid phase. For both terms,
ther considerations are necessary before their final form
be obtained. Let us start withI f ,i

M .
The termI f ,i

M is expressed as a function of the condition
expectation of a random variable~as it has been suggested
Sec. III D 4!

I f ,i
M 5

ap

a f
E ^Pp,i uV f&F f

E~ t,x;V f !dV f , ~48!

where the ratioap /a f expresses the probability to have
random force conditioned on the fact that there is a fl
particle atx. Let Yp be the sample-space value for the ra
dom variablePp at time t and locationx. It is then possible
to rewrite the previous equation as@wherep(YpuV f) is the
PDF of Pp conditioned uponUf#

I f ,i
M 5

ap

a f
E Yp,i p~YpuV f !F f

E~ t,x;V f !dV f dYp . ~49!

Let us introduce the joint PDF ofPp and Uf , p(Yp ,V f),
and the definition of the conditional PDFp(Yp ,V f)
5p(Yp,i uV f)p(V f), where p(V f) denotes the normalize
PDF of Uf at locationx. From the relations given in Sec
III C 2 one has directlya fr f p(V f)5F f

E(t,x;V f) and there-
fore the termI f ,i

M can be written as

I f ,i
M 5S ap

a f
Da fr f ^Pp,i&52aprp^Ap,i

D &. ~50!

The termI f ,i j
R that enters the Reynolds-stress equation

expressed by

I f ,i j
R 5~ I f ,i j

E 1I f , j i
E !2~^U f ,i&I f , j

M 1^U f , j&I f ,i
M !, ~51!

where

I f ,i j
E 5E ^Ap→ f ,i ux,V f&Vf , jF f

E~ t,x;V f !dV f . ~52!

This form of I f ,i j
R is easily found as follows: the PDE, whic

is written for the local instantaneous second-order m
ment ^U f ,iU f , j&, is linearly combined with the PDE fo
^U f ,i&^U f , j&. The latter PDE is obtained by developin
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^U f ,i&N(^U f , j&)1^U f , j&N(^U f ,i&)50, where the operatorN
symbolizes Eq.~46!. Using the same reasoning as in the ca
of the momentum equation and applying the model of S
III D 4 and the results of Sec. III C 2, the termI f ,i j

E is ex-
pressed as

I f ,i j
E 5S ap

a f
Da fr fE Yp,iVf , j p~Yp,i ,V f !dV f dYp ~53!

that is,

I f ,i j
E 52aprp^Ap,i

D Us, j&, ~54!

and finally

I f ,i j
R 52aprp^Ap,i

D us, j1Ap, j
D us,i&1aprp~Ud,i^Ap, j

D &

1Ud, j^Ap,i
D &!. ~55!

The expression ofI f ,i j
R is written in a form where the differ-

ence^U f , j&2^Us, j&, denotedUd,i , explicitly appears. This
quantity represents, at a given timet and a given locationx,
the difference between the expected fluid velocity and
expected fluid velocity seen by the discrete particles.

Finally, in Table II, a list of the terms to be closed
given. A distinction is made between the unclosed terms
the third-order moments that appear naturally in the P
verified by ^ufuf&. The closure issue will be addressed
Sec. VI where a closed two-field model is derived.

TABLE II. List of the unknown terms in the mean field equa
tions of the continuous phase.

Equation Variable Unclosed term
Third-order

moment

Eq. ~46! ^U f& I p f ,i
M ^Af ,i&

Eq. ~47! ^uf ,iuf , j& I p f ,i j
R ^Af ,uf , j& ^(Bf Bf

T) i j & ^uf ,iuf , juf ,k&
1-10
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C. Mean field equations for the discrete phase

The mean field equations for the discrete phase are
obtained following the procedure presented in Sec. IV
when deriving mean field equations for the fluid phase. T
expectation of a given functionHp(Vp ,cp) is defined by Eq.
~37!. Using Eqs.~23! and ~36!, and the explanations of Fig
1, it is straightforward to prove thatFp

E(t,x;Vp ,cp) verifies
the following Fokker-Planck equation:

]Fp
E

]t
1Vp,i

]Fp
E

]xi
52

]

]Vp,i
~Ap,iFp

E!2
]

]Vs,i
~As,iFp

E!

1
1

2

]2

]Vs,i]Vs, j
@~BsBs

T! i j Fp
E#

2
]

]Vs,i
~^Ap→s,i ux,Vp ,cp&Fp

E!. ~56!

As it was done in the previous section, Eq.~56! is multiplied
by Hp and thê •& operator is applied. Then, as done in Se
IV B, As , Ap , Bs , and Hp are assumed to be sufficient
smooth so that all generalized integrals converge~Fp

E ,
]Fp

E/]Vs,i , and]Fp
E/]Vp,i converge to zero when, at leas

one component ofVs or Vp goes to infinity!. After some
derivations, one can write

]

]t
~aprp^Hp&!1

]

]xi
~aprp^Vp,iHp&!

5aprpK Ap,i

]Hp

]Vp,i
L 1aprpK As,i

]Hp

]Vs,i
L

1
1

2
aprpK ~BsBs

T! i j

]2Hp

]Vs,i]Vs, j
L

1E ^Ap→s,i ux,Vp ,cp&
]Hp

]Vs,i
Fp

E~ t,x;Vp ,cp!dVpdcp .

~57!

The PDEs for the specified discrete particle expectations
now be derived, simply by choosing the right function f
Hp . Hp51,Vp,i ,Vs,i ,dp gives the continuity equation, th
momentum equation, the PDE verified by the expected fl
velocity seen, and the PDE for the mean diameter, res
tively. These equations have the form

]

]t
~aprp!1

]

]xi
~aprp^Up,i&!50, ~58a!

aprp

Dp

Dt
^Up,i&52

]

]xj
~aprp^up,iup, j&!1aprp^Ap,i&,

~58b!

aprp

Dp

Dt
^Us,i&52

]

]xj
~aprp^us,iup, j&!1aprp^As,i&

2aprpx^Ap,i
D &, ~58c!
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aprp

Dp

Dt
^dp&52

]

]x
~aprp^dp8up,i&!, ~58d!

wherex5(aprp)/(a fr f) and where the Eulerian derivativ
along the path of a discrete particle is denotedDp /Dt with
Dp /Dt5]/]t1^Up,m&]/]xm .

The mean field equations verified by the second-or
moments@n1m1q52 in Eq.~38!# can be derived in a way
that requires less algebra than the procedure that has
outlined so far by using Eq.~57! and the right function for
Hp . By introducing a change of coordinates in sample spa
v5V2^U&(t,x) anddp85dp2^dp&(t,x) ~wherev stands for
vp or vs!, it is straightforward to write the Fokker-Planc
equation verified byFp

E(t,x;vp ,vs ,dp8). Then using the usua
technique, the PDE verified by a given functio
Hp(vp ,vs ,dp) is derived in the same fashion as for Eq.~57!
where similar conditions for the convergence of the gene
ized integrals are required. This procedure is not deta
here but it can be found with all necessary derivations in R
@12#. After some algebra, one finds for^up,iup, j&,

aprp

Dp

Dt
^up,iup, j&52

]

]xk
~aprp^up,iup, jup,k&!

2aprp^up,i up,k&
]^Up, j&

]xk

2aprp^up, jup,k&
]^Up,i&

]xk

1aprp^Ap,ivp, j1Ap, jvp,i&, ~59!

for ^up,ius, j&,

aprp

Dp

Dt
^us,iup, j&52

]

]xk
~aprp^us,iup, jup,k&!

2aprp^us,iup,k&
]^Up, j&

]xk

2aprp^up, jup,k&
]^Us,i&

]xk

1aprp^As,ivp, j&1aprp^Ap, jvs,i&

2aprpx^Ap,i
D up, j&, ~60!

and for ^us,ius, j&,

aprp

Dp

Dt
^us,i us, j&

52
]

]xk
(aprp^us,ius, jus,k&)2aprp^us,ius,k&

]^Us, j&
]xk

2aprp^us, jus,k&
]^Us,i&

]xk
1aprp^As, jvs,i1As,ivs, j&

1aprp^~BsBs
T! i j &2aprpx^Ap, j

D us,i1Ap,i
D us, j&. ~61!

After some calculus, one finds for^dp8up,i&,
1-11
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aprp

Dp

Dt
^dp8up,i&52

]

]xj
~aprp^dp8up,iup, j&!

2aprp^dp8up, j&
]^Up,i&

]xj

2aprp^up,iup, j&
]^dp&
]xj

1aprp^Ap,idp8&,

~62!

for ^dp8us,i&,

aprp

Dp

Dt
^dp8us,i&52

]

]xj
~aprp^dp8us,iup, j&!

2aprp^dp8up, j&
]^Us,i&

]xj

2aprp^us,iup, j&
]^dp&
]xj

1aprp^As,idp8&

2aprpx^Ap,i
D dp8&, ~63!

and for ^(dp8)
2&,

aprp

Dp

Dt
^~dp8!2!&52

]

]xi
„aprp^~dp8!2up,i&…

22aprp^dp8up,i&
]^dp&
]xi

, ~64!

which concludes the set of mean field equations for
second-order moments related to the discrete phase. A
glance at the amount of terms that are unknown, not to m
tion the third-order moments, gives an insight into the in
cate work which is left, that is to provide suitable closures
order to use the model in practical computations. Table
gives a list of all unknown terms that appear in the me
field equations for the discrete phase. This information ha
be supplemented by Table II to obtain the total amount
unknown terms. The wise reader has already realized th
tremendous work is waiting and it is already clear that su
an approach~mean field equations! can only be used in prac
tice when further contractions are possible~the dimension of
the system is 46 with 19 unknown terms, which is nea
intractable!, that is in a simplified case. This is the subject
Sec. VI where an example of a practical model is given
the case where there is no size distribution for the disc
particles, i.e., the particle diameter is eliminated from
state vector. As mentioned in the Introduction, there are
ternatives to the mean field equations, for example, the
grangian approach. It is now shown that, with the Lagrang
approach, a great deal of the difficulties, created by the tr
ment of the discrete phase with mean field equations, ca
eliminated.
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V. MEAN FIELD –PDF APPROACH

In the previous section, the derivation of the mean fie
equations~up to the second-order moments! for both phases
has been presented. It has been explained, in both Tabl
and III, that apart from the third-order moments, writin
mean field equations is a move that generates, from a clo
mesoscopic model, unclosed terms at the macroscopic le
Indeed, one has to express the expectations of complex
linear expressions of the basic variables, for example, te
such aŝ Ai

D& or ^Ai
Dus,i&.

There is a natural way to avoid most of these difficultie
which is the Lagrangian approach. In fact, in such an
proach, mean field equations are used solely for the fl
phase whereas for the discrete phase information is
available at the mescocopic level, see Fig. 1. Actually,
term ‘‘Lagrangian approach’’ is rather misleading. Here t
approach is called from now onmean field–PDF approach
since mean fields are used for the description of the fluid
a PDF is employed for the discrete phase. It is now clear
such a methodcontainsthe mean field approach. Althoug
the description of the fluid is identical for the two-fiel
model and the mean field–PDF model, the treatment of
discrete phase is different. In the mean field–PDF approa
information is available for the local instantaneous values
any variable attached to the discrete phase whereas in
two-field approach a contraction has been made~only the
two first moments of the variables of interest are availab!.
This distinction is apparently often missed in the literatu
The two models are frequently compared without specify
that they do not correspond to the same level of informati
As a matter of fact, if such a comparison is attempted, o
should not only look at the computational effort and the ea
ness of implementation but also at the information that c
be extracted from the model. If one is interested in, for
stance, discrete-particle residence time or conditional sta
tics, the mean field–PDF approach can provide such in
mation but the two-field model cannot.

The mean field–PDF model equations are, for the flu
Eqs.~45! to ~47!, and for the particles Eqs.~30!. The closure
problem has been greatly simplified since the exhaustive
of Table III disappears. Closure is now limited to Table II

VI. PRESENTATION AND HIERARCHY OF PRACTICAL
MODELS

So far, a probabilistic approach to polydispersed turbul
two-phase flows has been presented. From it, mean
equations have been written for the expectations and
second-order moments of the variables that form the s
vectorZ. The SDEs, proposed for the trajectories ofZ, and
the mean field equations, derived for^Z& and ^ZZ &, are lim-
ited to the case of nonreacting turbulent polydispersed t
phase flows where the fluid is incompressible and the p
ticles are noncolliding hard spheres. Yet, the mean fi
equations, to be used in practical simulations, present an
tricate challenge: the dimension of the problem is very la
and the amount of information that has to be closed is
from being negligible. It is possible, however, in practice,
use the mean field equations for computations if further
1-12



t

PROBABILISTIC FORMALISM AND HIERARCHY OF . . . PHYSICAL REVIEW E 65 046301
TABLE III. List of the unknown terms in the mean field equations of the discrete phase.

Equation Variable Unclosed term Third-order momen

Eq. ~58b! ^Up& ^Ap,i&
Eq. ~58c! ^Us& ^Ap,i

D & ^As,i&
Eq. ~58d! ^dp&
Eq. ~59! ^up,iup, j& ^Ap,iup, j& ^up,iup, jup,k&
Eq. ~61! ^us,ius, j& ^As, jus,i& ^Ap,i

D us, j& ^(BsBs
T) i j & ^us,ius, jus,k&

Eq. ~60! ^us,iup, j& ^Ap, jus,i& ^As, jup,i& ^Ap, j
D up,i& ^us,iup, jup,k&

Eq. ~62! ^dp8up,i& ^Ap,idp8& ^dp8up,iup, j&
Eq. ~63! ^dp8us,i& ^As,idp8& ^dp8us,iup, j&
Eq. ~64! ^(dp8)

2& ^(dp8)
2up,i&
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sumptions are made on the nature of the flow, i.e., if furt
contractions are made@24#.

Before presenting the form of the mean field equatio
that are used in simulations, let us show an example o
two-point PDF model from which practical Lagrangian a
Eulerian models can be extracted. The presentation foll
the hierarchy of models that has been displayed in the
vious sections:~i! a two-point PDF model where informatio
is available at the mesoscopic level for both phases,~ii ! a
mean-field–PDF model where a first contraction is made
the fluid and~iii ! a two-field model where further contractio
is performed~information is given solely for the two firs
moments of both phases!.

A. Example of a two-point PDF model

From now on, the external force fieldFE is reduced to
gravity g. In the single-phase flow case, one can use
RSM ~Reynolds-stress model! equations since there is a d
rect connection between a Langevin equation and a R
equation@10#. However, another route can be chosen us
arguments from statistical physics@25#. The model is given
by

Af ,i52
1

r f

]^P&
]xi

1gi2
U f ,i2^U f ,i&

TL
1Gi j

a ~U f , j2^U f , j&!,

~65!

Bf ,i j 5AC0^e&d i j , ~66!

where ^P&(t,xf) is the mean pressure field and^e&(t,xf)
represents the mean dissipation rate of turbulent kinetic
ergy, 2kf5^uf

2&(t,xf). TL is the fluid integral Lagrangian
time scale, i.e.,TL5Ckf /^e&, where 1/C51/213C0/4 and
C0 is a constant~given by Kolmogorov theory!. Gi j

a is an
anisotropy matrix~whose precise form is not important her!
that dependssolelyon the moments ofZ f .

The construction of the SDE for the simulation of the tim
increments of the fluid velocity seen is an open quest
@12,21# and the form that is proposed here belongs to a se
possible solutions. The present model is expressed by@12#
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As,i52
1

r f

]^P&
]xi

1gi2Gi j ~Us, j2^Us, j&!1~^Up, j&

2^Us, j&!
]^U f ,i&

]xj
, ~67!

Bs,i i
2 5^e&FC0bi

k̃f

kf
1

2

3
S bi

k̃f

kf
21D G , ~68!

whereBs,i j is expressed in its simplest form~as a diagonal
and nonisotropic matrix! and Gi j is given by Gi j

5d i j /TL,i* . TL,i* is the fluid integral Lagrangian time sca
sampled along the trajectories of the discrete particles. T
time scale can be evaluated by a formula due to Csan
@26# as~if gravity is aligned with the first coordinate labele
1!

TL,i* 5TLY S 11Ci

u^Ur&u2

2kf /3
D 1/2

, ~69!

whereC15b2, C25C354b2 andb is the ratio of the fluid
Lagrangian and Eulerian integral time scales,b5TL /TE .
The formula of Csanady implies that, even in the simpl
case,Gi j is a nonisotropic diagonal matrix. To complete th
definition of Eq.~68!,

2
3 k̃f5(

i 51

3

bi^ui
2&Y (

i 51

3

bi , ~70!

wherebi5TL /TL,i* . In practice, the PDF approach given b
Eqs.~31! is not self-sufficient since one has to compute t
mean pressure field̂P&(t,xf) and the mean dissipation o
turbulent kinetic energy,̂e&(t,xf). It is possible, following a
procedure outlined by Pope@9#, to derive for each phase
Poisson equation verified by the mean pressure. This Poi
equation, for each phase, guarantees that the continuity e
tion of each phase is satisfied. The sum of both equation
a Poisson equation that expresses the mass conservati
the mixture. For̂ e&, a model, based on Kolmogorov’s thir
hypothesis@ln(e) is normally distributed in homogeneous tu
bulence#, has been developed@27#. It consists in writing a
Langevin equation for the frequency ratev5e/kf along the
trajectories of the fluid particles,
1-13
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dv5@Av1Ap→ f
v #dt1BvdW, ~71!

where the drift and diffusion coefficients,Av andBv respec-
tively, are specified in Ref.@27#. The new state vector be
comesZ5(Z f ,Zp ,v) andAv andBv are functions oft, Z
and its moments. Equation~71! has been supplemented by
term Ap→ f

v accounting for the influence of the particles o
the local instantaneous frequency. A possible model for
term reads

Ap→ f
v 5GvPp,iVf ,i , ~72!

which means that the influence of the particles onv is re-
lated to the local instantaneous work performed by the ac
of the particles on the fluid multiplied by a coefficient that
a function of the moments ofZ only. This subject is not
dwelt upon here and only the reduced state vectorZ
5(Z f ,Zp) is under investigation. For the complete state v
tor, the Fokker-Planck equation, Eq.~36!, can easily be ex-
tended by adding the additional terms generated by the
ditional dimension~v!.

We do not dwell upon the different models that can
derived for the drift vectors and the diffusion matrices a
we try instead to retain the main features that are of imp
tance for the derivation of the mean field equations. Deta
discussions and proofs of the modeling choices can be fo
in Ref. @12#.

B. Derivation of a practical mean field-PDF model

In the case of the fluid, the only difficulty~if one accepts
a gradient hypothesis for the third-order moments! when
writing mean field equations is the coupling terms both in
momentum equations and the RSM equations. In the cas
the discrete phase, a closed mesoscopic model, in the for
Langevin equations, has already been provided, Eqs.~67!
and ~68!.

When the PDEs for the fluid are solved by classical me
ods~for example, finite volume methods! the coupling terms
in a computational cell can then be calculated in a natu
way by making the classical hypotheses,~i! homogeneity in
space, and~ii ! the approximation of the expectation by e
semble averaging when the number of samples in the ce
sufficient. For example, for the coupling term in the mome
tum equations, letVf be the volume of the computational ce
that containsNp discrete particles. The total force in the ce
due to theNp particles is~with Np large enough!

Fp→ f5 (
n51

Np

rpVp
nAp

D,n , ~73!

whereVp
n is the volume of the discrete particle labeledn.

The previous equation is indeed the mean momentum
change@usingap.((n51

Np Vp
n)/Vf#

^Fp→ f&5aprpVf^Ap
D&. ~74!

One can, therefore, see that complicated nonlinear te
such aŝ Ap

D& are computed in a simple and natural way. T
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same procedure can be applied to the coupling term in
RSM equations,̂Fp→ f ,iU f , j&.

The level of simplicity of the mean field-PDF model~in
comparison to the simplified two-field model that is going
be presented in Sec. VI C! and its ability to compute compli-
cated terms in the polydispersed case are noteworthy. It
school example of the reason why PDF approaches shoul
preferred to mean field approaches in cases where the p
ics of the flow becomes complex. Examples of practi
computations performed with the mean field-PDF appro
can be found in Ref.@12#.

C. Derivation of a practical two-field model

The derivation of the model is treated in two differe
steps. First, a list of hypotheses that make it possible to
duce the dimensiond of the system is given and second, it
shown how to close then unclosed terms by making furthe
hypotheses. It is recalled that, in the frame of our study t
is limited to second-order moments,d546 andn512 @seven
third-order moments and now five unclosed terms, the ot
ones can be directly closed, see Eqs.~65!–~70! and Tables II
and III#.

1. Reduction of the dimension of the system

All hypotheses needed to reduce the dimension of
original system are now given.

~i! Let us consider the case where the distribution in
ameter of the discrete particles is ‘‘narrow’’ enough so th
the statistics involving the diameter can roughly be appro
mated as constant in time and space~this hypothesis is
equivalent to state that the suspension is monodispersed
therefore segregation effects cannot be quantified anymo!.
The sample space is only reduced by one dimension
eight PDEs have already been eliminated~all PDEs involv-
ing the particle diameter!, that is the new dimension of th
system isd538.

~ii ! Furthermore, it is assumed that there is no statist
bias between the statistics of the second-order moments
the fluid velocity seen and for the fluid velocity, i.e.,^usus&
.^ufuf&.

So far, with two hypotheses, which severely limit th
number of problems which can be treated, the dimension
the problem has been reduced tod532 but many unclosed
terms remainn59 ~four third-order moments and five un
closed terms!.

2. Treatment of the unclosed terms

Let us now enumerate the hypotheses that are neces
to make in order to treat the unclosed terms~the hypotheses
are numbered in continuation with the previous subsec
and this for the sake of clarity!.

~iii ! It is assumed that all third-order tensors^ZiZjZk& can
be expressed as a function of what is known~or solved for!,
that is,^Zi& and^ZiZj& ~a macroscopic closure is made wi
all the difficulties and the risks that such a move entai!.
This is done in analogy with classical turbulence resu
where one seeks macroscopic relations of the type~k is the
phase index!
1-14
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2^uk,iuk, juk,m&5Dk,mn~^Z&,^ZZ &!
]

]xn
^uk,iuk, j&,

~75!

and

2^us,iup, jup,m&5Dsp,mn~^Z&,^ZZ &!
]

]xn
^us,iup, j&,

~76!

whereDk,i j and Dsp,i j are often called ‘‘turbulent diffusion
tensors.’’ Their possible forms are not given here but can
found, for example, in Ref.@28#.

~iv! It is assumed that, for heavy particles, a good
proximation of Ap is @Eq. ~28! is supplemented with the
mean pressure gradient#

Ap,i52
1

rp

]^P&
]xi

1Ap,i
D 1gi , ~77!

where Ap
D is defined by Eq.~32!. In this expression, the

influence of pressure fluctuations has explicitly been
glected. Indeed, the pressure that should be involved in
gradient is the local instantaneous pressure seen,Ps„t,xp(t)…,
along the path of the discrete particle, which is different fro
the pressure fieldP„t,xf(t)… seen around the fluid particles
Therefore, it has been assumed that the fieldPs2^P& has no
influence on the motion of the discrete particles.

~v! Let us suppose that all terms involvingAp
D can be

linearized as follows~where, in our case,G(u) is a linear
function of u51,us ,up!:

^Ap
DG~u!&5

1

^tp&
^~Us2Up!G~u!&, ~78!

^tp&5tp~^Z&,^ZZ &!. ~79!

This final assumption allows us to close all terms involvi
Ap

D and more generallyAp . After a subsequent number o
hypotheses, it now possible to finalize our task and giv
simplified, but still quite intricate (d532), closed two-field
model.

3. Finalization of the model

It is now straightforward to write the set of continuity an
momentum equations for both phases. The continuity eq
tions are given by Eqs.~45! and ~58a!. For the momentum
equations, one has

akrk

Dk

Dt
^Uk,i&52ak

]^P&
]xi

2
]

]xj
~akrk^uk,iuk, j&!1I k,i

1akrkgi , ~80!

where the interaction terml k,i is simply given by lineariza-
tion of Ap

D as explained in hypothesis~v! ~the precise form of
the calculation of̂ tp& is not given here but can be found
Ref. @28#!,
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I k,i5Ik

aprp

^tp&
~^Us,i&2^Up,i&!. ~81!

Here,Ik is equal to 1 ifk5p and to21 if k5 f . Bearing in
mind the models presented above and hypotheses~iii !–~v!,
the remaining equations can now be written. For the exp
tation of the fluid velocity seen,^Us&, it is found that the sum
of the terms to close read@the two last terms on the right
hand side of Eq.~58c!#

aprpF2
1

r f

]^P&
]xi

1gi1~^Up, j&2^Us, j&!
]^U f ,i&

]xj
G2xI p,i ,

~82!

where, as mentioned before,x5aprp /a fr f . For the RSM
equations, as done for the expected fluid velocity seen, o
the sum of the terms to close is given, and this for the sak
clarity. The closure of the third-order moments is immedia
by resorting to hypothesis~iii !. Using hypothesis~ii !, the
sum of the three last terms on the right-hand side of Eq.~59!
is

2
a fr f

T
@^uf ,iuf , j&2 2

3 kfd i j #1a fr f@Gik
a ^uf , juf ,k&

1Gjk
a ^uj ,iuf ,k&#1

aprp

^tp&
@22^uf ,iuf , j&1Mi j 1Ud,i^Ur , j&

1Ud, j^Ur ,i&#2a fr f
2
3 ^e&d i j , ~83!

where 1/T5(113C0/2)^e&/kf and whereMi j is a symmet-
ric tensor given byMi j 5^us,iup, j&1^us, jup,i&. It is easily
seen that, apart from the supplementary terms that arise f
the two-phase flow formulation (a fr f) and the influence of
the discrete particles on the fluid, Eq.~47! supplemented by
Eq. ~83! is equivalent to the Rotta model whenGi j

a 50. This
illustrates perfectly the correspondence between RSM m
els and SDEs for fluid particles. Depending on the cho
form of the SDEs, different RSM formulations can be o
tained.

The term to close in Eq.~59! reads@once again the closure
of the third-order moments is immediate by resorting to h
pothesis~iii !#

aprp^Ap,iup, j1Ap, jup,i&52
aprp

^tp&
@2^up,iup, j&2Mi j #,

~84!

and for the fluid-particle velocity moment, the sum of th
three last terms on the right-hand side of Eq.~60! is

aprp

^tp&
@^uf ,iuf , j&2~11x!^us,iup, j&1x^up,iup, j&#

1aprpGik^us,kup, j&. ~85!

This last closure completes the formulation of the ‘‘simp
fied’’ two-field model. The form of the equations given her
especially the ones whereAs plays a part, should not be
1-15



tio
til

ng
s
o
x
c

e
ls
a

h
h

hy

py
s,
e
n

ve

is

a
i

on
n

o-

n

y
b

r

can
r if
DF

the

then
ly

ion

as

d
of

-
re
nck

a
ing

and

ERIC PEIRANO AND JEAN-PIERRE MINIER PHYSICAL REVIEW E65 046301
taken as final since the exact formulation of the accelera
of the fluid along the trajectories of discrete particles is s
an open question.

4. Further reduction of the system

As mentioned in the Introduction, one of the underlyi
goals, when one attempts to write mean field equation
describe a physical phenomenon, is the use of modern c
puter technology to obtain numerical solutions by, for e
ample, control volume methods in combination with fra
tional step algorithms@24#. Here, it is shown, by further
reduction of the closed system of PDEs of the previous s
tion, that our approach is in line with the two-fluid mode
that can be encountered in research and industrial softw
@24#. Let us point out that the dimension of the systemd
532 is still too large to allow practical simulations wit
conventional techniques for the resolutions of PDEs. T
system can be further reduced by making two additional
potheses.

~vi! Let us consider flows where the level of anisotro
~for both phases! is low so that all second-order tensor
^upup& and^ufuf&, can be contracted and expressed by th
trace ^Z2& as stated in the Boussinesq-like approximatio
For both phases, the Boussinesq-like approximation is gi
by

^uk,iuk, j&5 1
3 ^uk

2&d i j 22nk~^Z&,^Z2&!Ŝk,i j ~^Uk&!, ~86!

wherenk are viscositylike coefficients whose specific form
not given but possible expressions can be found in Ref.@28#.
Ŝi j is the deviatoric part of the strain rate tensorSk,i j . In the
Boussinesq-like approximation, it is implicitly assumed th
the characteristic time scale of the fluctuating motion
much smaller than the time scale of the mean flow, a c
straint that is not always true in practice since, in ma
flows, this separation of scales is not always verified.

~vii ! Let us make a similar assumption as hypothesis~vi!
for the tensor̂ us,iup, j&. It is supposed that a general macr
scopic law exists, that is,

^us,iup, j&5 1
3 ^us,iup,i&d i j 1 f i j ~^Z&,^Z2&!, ~87!

where we do not describe the exact form of the functionf i j ,
see Refs.@28# and @29# for possible laws.

If hypotheses~vi! and~vii ! can be applied, the dimensio
of the system becomes ‘‘reasonable’’ (d514). Letkk denote
the turbulent kinetic energy of both phases,kk5^uk

2&/2 and
kf p the fluid-particle velocity covariance,kf p5^us,iup,i&.
Equations~47!, ~59!, and ~60!, where the closures given b
Eqs. ~83!–~85! have been inserted, can than be replaced
three scalar PDEs of the form

a fr f

D f kf

Dt
5

]

]xk
Fa fr fD f

]kf

]xk
G2a fr f ^uf ,iuf , j&

]^U f ,i&
]xj

1
aprp

^tp&
@22kf1kp f1Ud,i^Ur ,i&#2a fr f ^e&,

~88!
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aprp

Dpkp

Dt
5

]

]xk
FaprpDp

]kp

]xk
G2aprp^up,iup, j&

]^Up,i&
]xj

2
aprp

^tp&
@2kp2kf p#, ~89!

and

aprp

Dpkf p

Dt
5

]

]xk
FaprpDsp

]kf p

]xk
G2aprp^us,iup, j&

]^Up,i&
]xj

2aprp^up, jup,i&
]^Us,i&

]xj
1

aprp

^tp&
@2kf2~1

1x!kf p12xkp#1aprpGi j ^us,iup,i&. ~90!

Here, it has of course been assumed thatGa50, Dk,mn
52Dkdnm and Dsp,mn5Dspdmn . Equations ~88!–~90!
supplemented by the continuity equations, Eqs.~45! and
~58a!, the momentum equations, Eq.~80!, and Eq.~58a! in
combination with Eq.~82!, are often used in the literature fo
computations in different applications@24#. Given the
amount of contraction and the needed hypotheses, one
wonder whether it is suitable or not to use such a model o
a more detailed description, such as the mean field-P
model, should be used.

For numerical reasons@24#, the coupling term between
the two momentum equations is often written in terms of
so-called drift velocity as

Ik

aprp

~tp!
~^U f ,i&2^Up,i&2Ud,i !, ~91!

so that both momentum equations are coupled. One has
to give the PDE satisfied by the drift velocity that is simp
obtained by using Eqs.~45!, ~58a!, ~58c!, and ~82!, that is,
after some algebra,

aprp

Dp

Dt
Ud,i5

]

]xj
~aprr^us,iup, j&!2x

]

]xj
~a fr f ^uf ,iuf , j&!

2aprpUd, j

]^U f ,i&
]xj

. ~92!

The form of this equation strongly depends on the express
that is chosen forAs in the Langevin equation forUs and
therefore the form given above should not be considered
the last word.

VII. CONNECTIONS WITH PREVIOUS WORK

In this work, a probabilistic description of polydisperse
turbulent two-phase flows has been presented in the form
a two-point PDF~one fluid-particle point and one discrete
particle point!. The trajectories of the pairs of particles a
given by diffusion processes and thus the Fokker-Pla
equation verified by the PDF is known. In other words,
closed mesoscopic approach is provided. It is worth bring
out some important features of the present formalism.

~i! The correspondence between a PDF equation
1-16



n

cr
ee
. I
La
an

if-
o

s

D

e

a
le
a
p

ca

o
rm

fie
s.
e

s
c

n

ob

de
a

an
s
t

ic
a

r/
io
e

er

no
gian
ac-
m-
tab-
can
ap-
ss-

ly-
d in

s
By

it is
evin
as-

n
,

ived
to
r to
m-
that
In
t be
eld
for

dis-
ap-
arly
ctly
or
ach,

tion
alu-
red,
is

the

bi-
to
se

m-
tical
ll-
dif-

PROBABILISTIC FORMALISM AND HIERARCHY OF . . . PHYSICAL REVIEW E 65 046301
mean field equations has been noticed, for the descriptio
the discrete phase, by several authors. However, in these
proaches, there is no systematic path from the PDF des
tion to the field description, i.e., the correspondence betw
Eulerian and Lagrangian quantities is not clearly made
the present formalism, there is a natural path from a
grangian PDF equation to an Eulerian PDF equation,
therefore to mean field equations.

~ii ! By contraction of the present PDF formalism, the d
ferent approaches encountered in the literature can be
tained. There is a hierarchy~different levels of information!
between the models that is clearly identified.

~ii.1! By contraction over all discrete particle propertie
the PDF equation verified by the marginalpf

L ~the one-point
fluid PDF! is retrieved. This corresponds to the classical P
approach to turbulent single-phase flows@8,9#.

~ii.2! By contraction over all fluid particle properties, th
PDF equation verified by the marginalpp

L ~the one-point par-
ticle PDF! is retrieved. This corresponds to the classical L
grangian models@2#. These methods are rather easy to imp
ment but this very easiness may hide consistency issues
a lack of theoretical analysis can lead to the creation of s
cific problems@12#. In the present approach a mathemati
framework is provided and such problems~spurious drifts,
correspondence with a PDF,...! are easily avoided~see@12#
for detailed explanations!.

~ii.3! The PDF approach to polydispersed turbulent tw
phase flows is often encountered in the literature in the fo
of a kineticlike equation for the discrete phase, e.g.,@18,19#.
In these work, one secks the Fokker-Planck equation veri
by the marginalpp

L or more precisely by one of its marginal
Indeed, the fluid velocity seen is often considered as an
ternal variable and one has to resort to functional calculu
provide a closed form of the Fokker-Planck equation. In su
derivations, Gaussianity has to be assumed@15# and in non-
homogeneous turbulence~when the velocity of the fluid see
is bound to deviate from Gaussianity!, this approximation
might be too strong. It has been shown@12#, by Gaussian
integration by parts, that the Fokker-Planck equation
tained by most authors is in fact a contraction of Eq.~36!.

~iii ! In the present formalism, from aclosedmesoscopic
description, it is demonstrated how a closed two-field mo
can be derived, provided that some additional hypotheses
made. The path that is proposed in this work is rigorous
not model dependent. Once the models for the trajectorie
the pairs of particles have been chosen, the derivation of
mean field equations is straightforward and the class
problem of finding closure laws at the macroscopic level c
then be avoided.

~iv! Many two-field models are often derived by time o
and volume averaging the local instantaneous field equat
and by introducing closure laws at the macroscopic lev
Other two-field models combine ensemble averaging op
tors ~for the fluid! and probabilistic tools~kinetic equations
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for the particles!. In the latter models, there is, once again,
clear correspondence between Eulerian and Lagran
quantities and closure, for the fluid, is performed at the m
roscopic level. In the former models, apart from the proble
dependent macroscopic closures, it is often intricate to es
lish the link between the computed quantities and what
be measured by experiment. This is not the case in our
proach where all operators are in fact, in discrete form, ma
weighted averages.

VIII. CONCLUSION

In the present paper, a probabilistic description of po
dispersed turbulent two-phase flows has been presente
the form of a two-point PDF~one fluid-particle point and one
discrete-particle point! where the models are given in term
of the trajectories of the associated diffusion process.
doing so, a closed mesoscopic model is provided and
shown that there is a clear equivalence between Lang
equations and the Fokker-Planck equation verified by the
sociated PDF.

By giving the relations between the field of distributio
functions~Eulerian PDF! and the two-point Lagrangian PDF
it is demonstrated how mean field equations can be der
in a consistent manner without having recourse directly
macroscopic closures. It is then emphasized that, in orde
derive a two-field model that can be used in practical co
putations, supplementary assumptions have to be made
greatly limit the types of flows that can be considered.
flows where, at least, one of these hypotheses canno
made, it is shown that the natural alternative is the mean fi
PDF approach where one uses the mean field approach
the fluid but where one keeps the PDF approach for the
crete phase. It is important to stress that these two
proaches are often compared in a misleading way. As cle
seen in the present work, they cannot be compared dire
since they correspond to a different level of information f
the discrete phase. In the case of the mean field appro
only the two first moments are available~with all supplemen-
tary assumptions and limitations that are needed! whereas in
the mean field-PDF approach any expectation for a func
of the variables attached to a discrete particle can be ev
ated. As a matter of fact, when two methods are compa
one should not only judge the computational effort that
needed~an error that is often made! but the optimal ratio
between the level of information that can be obtained and
simulation time.

Finally, it should be pointed out that the use of proba
listic tools in the present form is not the ultimate answer
our problem of modeling polydispersed turbulent two-pha
flows. In other words, the probabilistic tools that are e
ployed cannot be declared as fundamental but as a prac
way to model complex systems within the frame of we
established mathematical theories such as the theory of
fusion processes.
1-17
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